Skip to main content

Evaluation of 3D Printers

The 3D printing process builds a three-dimensional object from a computer-aided design (CAD) model, usually by successively adding material layer by layer, which is why it is also called additive manufacturing.



The 3D printing process builds a three-dimensional object from a computer-aided design (CAD) model, usually by successively adding material layer by layer, which is why it is also called additive manufacturing.

3D Printers are all starts with a 3D model. You create one yourself or download it from a 3D repository. When creating it yourself you can choose to use a 3D scanner, app, haptic device, code or 3D modeling software.

The creation of a 3D printed object is achieved using additive processes. In an additive process an object is created by laying down successive layers of material until the object is created. Each of these layers can be seen as a thinly sliced horizontal cross-section of the eventual object.

In 1981 Early additive manufacturing equipment and materials were developed in 1980. In 1981, Hideo Kodama of Nagoya Municipal Industrial Research Institute invented two additive methods for fabricating three-dimensional plastic models with photo-hardening thermoset polymer, where the UV exposure area is controlled by a mask pattern or a scanning fiber transmitter.

The technology used by most 3D printers to date especially hobbyist and consumer-oriented models—is fused deposition modeling, a special application of plastic extrusion, developed in 1988 by S. Scott Crump and commercialized by his company Stratasys, which marketed its first FDM machine in 1992.

At the time, all metalworking was done by processes that are now called non-additive ; although plenty of automation was applied to those technologies , the idea of a tool or head moving through a 3D work envelope transforming a mass of raw material into a desired shape with a toolpath was associated in metalworking only with processes that removed metal, such as CNC milling, CNC EDM, and many others. But the automated techniques that added metal, which would later be called additive manufacturing, were beginning to challenge that assumption. By the mid-1990s, new techniques for material deposition were developed at Stanford and Carnegie Mellon University, including microcasting and sprayed materials. Sacrificial and support materials had also become more common, enabling new object geometries

The term 3D printing originally referred to a powder bed process employing standard and custom inkjet print heads, developed at MIT in 1993 and commercialized by Soligen Technologies, Extrude Hone Corporation, and Z Corporation.

The 2010s were the first decade in which metal end use parts such as engine bracket and large nuts would be grown (either before or instead of machining) in job production rather than obligately being machined from bar stock or plate. It is still the case that casting, fabrication, stamping, and machining are more prevalent than additive manufacturing in metalworking, but AM is now beginning to make significant inroads, and with the advantages of design for additive manufacturing, it is clear to engineers that much more is to come.

In 2014 Georgia Institute of Technology Dr. Benjamin S. Cook, and Dr. Manos M. Tentzeris demonstrate the first multi-material, vertically integrated printed electronics additive manufacturing platform (VIPRE) which enabled 3D printing of functional electronics operating up to 40GHz.



Comments

Popular posts from this blog

3D Printing in Education

3D Printing is an aspiration for many educational institutions.  Currently, 3D printing technology is becoming one of the new key technologies. It enables companies to cut costs, shorten their time-to-market, helps them to produce stronger and lighter parts and improve their efficiency. For that reason, it is important that students understand the technology of the future global economy. In the US and other places, already summer camps have been set up to teach 3D printing techniques over the summer. Children from a young age get to explore the subject of additive manufacturing. 3D printing  works by starting with a digital model in a 3D CAD (Computer-Aided Design) file and then creating a physical three-dimensional object. An object is scanned - or an existing scan of an object is used, which is processed by a piece of software known as a “slicer.” The slicer converts the model into a series of thin, 2-dimensional layers and produces a file with instructions (G-code) tailored

Laminated Object Manufacturing (LOM)

Description Laminated object manufacturing is a rapid prototyping system developed by Helisys Inc. In it, layers of ad hesive-coated paper, plastic, or metal laminates are successively glued together and cut to shape with a knife or laser cutter. Like all 3D-printed objects, models made with a LOM system  start out as CAD files . Before a model is printed, its CAD file must be converted to a format that a 3D printer can understand — usually STL or 3DS. The main components of the system are a feed mechanism that advances a sheet over a build platform, a heated roller to apply pressure to bond the sheet to the layer below, and a laser to cut the outline of the part in each sheet layer. Parts are produced by stacking, bonding, and cutting layers of adhesive-coated sheet material on top of the previous one.  A laser cuts the outline of the part into each layer. After each cut is completed, the platform lowers by a depth equal to the sheet thickness (typically 0.002-0.020 in

Selective laser melting (SLM)

Selective Laser Melting   (SLM) allows the manufacture of functional components with high structural integrity at a low cost and is compatible with various materials, including biocompatible titanium alloys.  Selective laser melting uses a laser to melt successive layers of metallic powder. The laser will heat particles in specified places on a bed of metallic powder until completely melted. The CAD 3D file dictates where melting will occur. Then, the machine will successively add another bed of powder above the melted layer, until the object is completely finished. SLM is a powder bed AM technology in which parts are fabricated layer by layer using the action of a high-energy beam on a powder bed. In this process, the powders are fully melted and solidified. The process is very similar to the SLS process but the energy of the beam is much higher and the process is performed under a controlled atmosphere. SLM is currently very popular for the fabrication of metallic parts