Skip to main content

Applications of 3D printing

The beauty of 3D printing is that it’s a simple technology that can be applied to all sorts of fields. It’s lowered the barrier for anyone to design and create and opened up opportunities to streamline processes already in place.

The Top 5 applications of 3D Printing are,

  • Education
  • Prototyping
  • Manufacturing
  • Medicine
  • Construction
  • Jewellery

Additive manufacturing's earliest applications have been on the toolroom end of the manufacturing spectrum. For example, rapid prototyping was one of the earliest additive variants, and its mission was to reduce the lead time and cost of developing prototypes of new parts and devices, 

which was earlier only done with subtractive toolroom methods such as CNC milling and turning, and precision grinding, far more accurate than 3d printing with accuracy down to 0.00005" and creating better quality parts faster, but sometimes too expensive for low accuracy prototype parts

Comments

Popular posts from this blog

3D Printing in Education

3D Printing is an aspiration for many educational institutions.  Currently, 3D printing technology is becoming one of the new key technologies. It enables companies to cut costs, shorten their time-to-market, helps them to produce stronger and lighter parts and improve their efficiency. For that reason, it is important that students understand the technology of the future global economy. In the US and other places, already summer camps have been set up to teach 3D printing techniques over the summer. Children from a young age get to explore the subject of additive manufacturing. 3D printing  works by starting with a digital model in a 3D CAD (Computer-Aided Design) file and then creating a physical three-dimensional object. An object is scanned - or an existing scan of an object is used, which is processed by a piece of software known as a “slicer.” The slicer converts the model into a series of thin, 2-dimensional layers and produces a file with instructions (G-code) tailored

Laminated Object Manufacturing (LOM)

Description Laminated object manufacturing is a rapid prototyping system developed by Helisys Inc. In it, layers of ad hesive-coated paper, plastic, or metal laminates are successively glued together and cut to shape with a knife or laser cutter. Like all 3D-printed objects, models made with a LOM system  start out as CAD files . Before a model is printed, its CAD file must be converted to a format that a 3D printer can understand — usually STL or 3DS. The main components of the system are a feed mechanism that advances a sheet over a build platform, a heated roller to apply pressure to bond the sheet to the layer below, and a laser to cut the outline of the part in each sheet layer. Parts are produced by stacking, bonding, and cutting layers of adhesive-coated sheet material on top of the previous one.  A laser cuts the outline of the part into each layer. After each cut is completed, the platform lowers by a depth equal to the sheet thickness (typically 0.002-0.020 in

Selective laser melting (SLM)

Selective Laser Melting   (SLM) allows the manufacture of functional components with high structural integrity at a low cost and is compatible with various materials, including biocompatible titanium alloys.  Selective laser melting uses a laser to melt successive layers of metallic powder. The laser will heat particles in specified places on a bed of metallic powder until completely melted. The CAD 3D file dictates where melting will occur. Then, the machine will successively add another bed of powder above the melted layer, until the object is completely finished. SLM is a powder bed AM technology in which parts are fabricated layer by layer using the action of a high-energy beam on a powder bed. In this process, the powders are fully melted and solidified. The process is very similar to the SLS process but the energy of the beam is much higher and the process is performed under a controlled atmosphere. SLM is currently very popular for the fabrication of metallic parts